
Awesome
Command Line

21 Commands to Get You Started

With Your Computer’s Magic Portal!

Christopher S. Jones

Awesome Command Line

by Christopher S. Jones

Copyright © 2025 Christopher S. Jones. All rights reserved.

Published by Christopher S. Jones, Post Office Box 7201, Boulder, CO 80306

November 2025: First Edition

The publisher and author have used their best efforts in preparing this book to ensure the accuracy

and completeness of the information contained herein. However, they make no representation or

warranty with respect to the accuracy, completeness, or suitability of the information provided. The

information in this book is provided "as is" without express or implied warranty of any kind. The

publisher and author disclaim any responsibility for any errors, omissions, or inaccuracies in the

information contained in this book, and they shall not be liable for any damages or losses arising from

the use of the instructions or information provided. By using the instructions and information in this

book, you acknowledge that you are doing so at your own risk, and you release the publisher and

author from any claims or liabilities that may arise from such use.

Typeset by the author using the Asciidoc® Language™ [https://asciidoc.org]
[1]

 and a sprinkling of

custom Ruby code. All source code for the book is available as a free and open source software project

[https://github.com/christopher-s-jones/awesome-command-line]. The body text font is EB Garamond by

Georg Duffner and Octavio Pardo. The heading font is PT Sans Narrow by Alexandra Korolkova,

Olga Umpeleva and Vladimir Yefimov, and released by ParaType. The fixed width code font is Adobe

Source Code Pro by Paul D. Hunt. The cover page title font is Qwitcher Grypen by Robert Leuschke,

with PT Sans Narrow. Illustrations and logo design are by the author using Sketch.

[1] AsciiDoc® and AsciiDoc Language™ are trademarks of the Eclipse Foundation, Inc. Asciidoctor® is a trademark owned by Dan

Allen, Sarah White, and the project’s individual contributors.

https://asciidoc.org
https://github.com/christopher-s-jones/awesome-command-line

To Kimberly, with love and gratitude.

Thank you for leading the Dawn.

CONTENTS

Preface . 1

1. The Command Line Is For Everyone . 3

Getting Started 3

Terminal Applications 5

The Shell 16

The Command Prompt 17

The Parts of a Command 18

Single Line and Multi-Lined Commands 21

Command Line Interfaces are Awesome! 24

2. Core Commands: pwd, man, clear, cd, ls . 25

For the Love of Files and Folders 25

The pwd Command—Print the Working Directory 26

File and Directory Paths 27

The man Command—Accessing the Manual 30

The clear Command—Keeping It Tidy 35

The cd Command—Changing Directories 37

Tab Completion—Give Your Fingers A Rest 39

The ls Command—Listing Files and Folders 42

Core Commands Are Awesome! 51

3. File Commands: echo, mv, cp, rm, nano . 52

iv Contents

Powerful Ways To Work With Files 52

The echo Command—Easily Creating Files 53

Redirection, Standard Input, Output, and Error 54

The mv Command—Renaming and Relocating Files 56

The cp Command—Copying Files 58

The rm Command—Deleting Files 60

The nano Command—Creating and Editing Files 62

Command Line File Handling is Awesome! 66

4. Folder Commands: mkdir, rmdir, du. 67

Lightning Fast Folder Management 67

The mkdir Command—Creating Directories 67

Expansion—Powerful Techniques To Speed Up Your Commands 69

The rmdir Command—Deleting Directories 72

The du Command—Viewing Disk Usage 77

Command Line Folder Handling is Awesome! 80

5. Text Data Commands: cat, sort, head, tail, grep . 81

Versatile Ways To Work With Text Data 81

The cat Command—Viewing and Combining Files 82

Pipes—The Power Of Compound Commands 87

The sort Command—Sorting the Contents of a File 88

The head Command—Previewing the Top of a File 91

The tail Command—Previewing the Bottom of a File 97

The grep Command—Filtering Data 100

Command Line Data Handling is Awesome! 105

6. Utility Commands: less, history, open . 106

Utilities That Make Your Life Easier 106

The less Command—Paging Output for Easy Viewing 106

The history Command—Using Your Command History 106

The open Command—Opening Files and Folders 107

Command Line Utilities are Awesome! 108

 v

7. Next Steps. 109

Practice Makes Perfect! 109

Upgrade Your Terminal Colors and Prompt 109

Explore the Universe of Commands 109

Congratulations! 110

You Are Awesome! 111

Appendix A: Customizing Your Terminal . 112

Appendix B: Using a Package Manager . 114

Installing More Commands On Your Computer 114

For Mac—Installing Homebrew 114

For Windows and Linux—Using The Built-In Package Manager 114

Appendix C: Regular Expressions—Matching Patterns Like a Pro. 116

vi Contents

PREFACE

Welcome to Awesome Command Line! I am so grateful that you have found this book, and that you’re

interested in exploring the seemingly secret world of computing from the command line!

This book is a reminder that you have superpowers at your fingertips! We are all familiar with the ways

that we interact with our computers on a daily basis — click, drag, drop, scroll, touch, tap. The graphical

nature of our screens and applications are absolutely amazing and indispensible. In this book, we

explore the secret little gems available on all operating systems with another familiar way to

interact — type! And the best part is that the magical commands we explore are largely derived from the

English words that describe them, so acquainting ourselves with these commands is straight-forward

with a bit of guidance. Once you become familiar with this small set of essential commands, adding

new commands to your toolbox is even easier. With some simple dedication and practice, you will be

able to enhance your computing workflow to be even more efficient and powerful. You’ll manage

your projects in ways that would otherwise be labor intensive when using your mouse. The intention

of this book is to empower you in your creative journey by showing you how the command line is an

awesome tool to get things done!

The UNIX® computer operating system developed by Bell Laboratories in the 1970s and 1980s was

groundbreaking technology. When I first learned about Linux®—a Unix-inspired operating system

for personal computers, I was fascinated by the freedom of it, and I spent a substantial amount of time

figuring out how to work with it via text commands. Apple® transitioned to a Unix-like operating

system with Mac OS X, and Microsoft® introduced the Windows® Subsystem for Linux to bring a

Unix-like environment to Windows®. I’ve been excited about these moves because we now have access

to these incredible tools in very polished desktop environments. My intention with this book is to save

you as much start-up time and energy as possible in learning the command line, and to empower you

to get the most out of the operating system of your choice, be it macOS®, Linux®, or Microsoft®

Windows®. Have fun with it!
[1]

 1

Who Should Read This Book
This book is written for everyone who loves computing! It’s written as an introductory book to get

you started with the infinite universe of text commands. The twenty one commands that I highlight

are essential to building your foundation, and the command line concepts throughout each chapter

solidify it further. This is intended as a launching point for everyone who likes to be organized and

productive. Those in creative works — writers, artists, designers, photographers, and editors, and those

beginning their journey with computers — students, early career scientists, librarians, aspiring

engineers, software developers, system administrators, and project managers, can all learn the

foundations and then pick up the commands that are specific to their course of study, craft, or

industry. Those interested in joining the decentralized web by running their own Bitcoin or Lightning

node, Nostr relay, and other freedom technologies will benefit from knowing these essentials. No matter

your interests, this book is for those who love to learn!

Conventions Used in This Book
The following informational icons are used throughout the book:

This icon indicates an informational note.

This icon indicates a tip, suggestion, or a point of awesomeness.

This icon indicates a time to be very careful with a command or action. Many

commands are extremely powerful, and the results may be irreversible.

Getting the Command Line Examples
The examples in this book are accessible for download from a link on the book release page

[https://github.com/christopher-s-jones/awesome-command-line]. The entire book source code is

released as an open source project under the Creative Commons Attribution-ShareAlike 4.0

International license, and may be used under those terms.

[1] UNIX is a registered trademark of The Open Group. Linux is the registered trademark of Linus Torvalds in the U.S. and other

countries. Apple, Mac, and macOS are trademarks of Apple Inc., registered in the U.S. and other countries and regions. Microsoft and

Microsoft Windows are trademarks of the Microsoft group of companies. References to companies or trademarked products within

this work are provided for informational purposes only and do not imply endorsement, sponsorship, or affiliation by those companies.

The inclusion of such references is solely for the purpose of illustration or commentary, and the author and publisher do not intend to

suggest any formal relationship or approval by the respective trademark holders.

2 Preface

https://github.com/christopher-s-jones/awesome-command-line

CHAPTER 1

The Command Line Is For Everyone

Getting Started
The command line is a tool of empowerment—a magic portal to your computer that helps you

navigate, organize, create, and refine your files on your computer. It also helps you automate and

manage tasks running on your computer. When repeatedly clicking and choosing with your mouse

becomes tedious, the command line prompt allows you to free yourself and just issue a powerful

command that does all that you want, quickly and with ease, so you can get back to the creative side of

your work. You can turn complex tasks that require a series of many steps into one workflow that

accomplishes what was once inconvenient. Each of the major computer operating systems—including

macOS, Linux, and Windows—all provide ways to use the command line
[1]

. While it is an extremely

helpful tool on your local desktop or laptop machine, the command line is essential for running

remote services, such as a website. This idea in itself is magical! The Internet predominantly runs on

Linux-based servers in remote data centers around the world, and access to these servers largely

happens through the command line. Can you imagine that? Managing computers remotely around

the world? Yes! Thank you command line! We will be focusing on using the command line locally on

your computer and how it can be a boost in your workflow, while laying the groundwork for you to

expand your computing skills even further.

This book serves as an introduction to the command line and how to get started with it. We first get

set up with the amazing tool you need to use the command line—a terminal application that knows

how to handle your commands. But wait, you say—What is a terminal? What is a command? What is

a prompt? In this chapter we introduce these and other concepts in a step by step manner so you have a

solid understanding of the terms and lingo needed to use this magic little gem that may be unfamiliar

now, but will soon be your trusty friend at your side. In the subsequent chapters we dive in with

hands-on learning by highlighting twenty-one essential commands that build your command line

foundation. Take a look at Table 1! It shows our road map of the commands we cover in each chapter.

Getting Started 3

Table 1. The 21 commands covered in the book, by chapter and category.

Chapter 2

Core

Commands

Chapter 3

File

Commands

Chapter 4

Folder

Commands

Chapter 5

Text Data

Commands

Chapter 6

Utility

Commands

pwd echo mkdir cat less

man mv rmdir sort history

clear cp du head open

cd rm tail

ls nano grep

Each chapter builds on the previous. In addition to each command, we learn key concepts along the

way that make using the command line progressively more powerful. These concepts include file and

directory paths, tab completion, redirection, expansion, and pipes. Before we get into the details, let’s first

take a step back and think about the metaphors we use to interact with our computers.

The graphical desktop metaphor

When we turn on our computers, we are greeted with beautiful desktop images, icons, windows,

menus, a pointer, and other graphical symbols that help us navigate our system and enable our digital

creativity. Collectively, these components are known as the graphical user interface, or GUI for short.

We predominantly work with our computers in this manner, and for good reason—it works really

well! So think of the graphical user interface as an analogy, or metaphor, that helps us work with the

underlying hardware of our machines—processors, storage drives, memory, etc. For instance, a folder

icon on your Desktop represents a collection of files, and a file icon represents some data stored on

your computer’s drive. These metaphors are highly intuitive, but there are times when graphical tools

slow us down—usually when you need to work on something repeatedly, remotely, when working

with complex or large amounts of data, or when there is currently no way to do what you want using

the graphical interface.

The command line metaphor

A command line interface, or CLI, is also a way to work with your computer by means of a metaphor,

but in this case we use plain text words and other combinations of characters as symbols to indicate to

the computer what you want to accomplish. Sometimes they resemble English words, other times they

are shortened versions of words, or acronyms of multiple words. For example, a command that we

cover in Chapter 2 is pwd . This is just a three-character command that stands for "print working

4 Chapter 1. The Command Line Is For Everyone

directory". Here’s a quick example:

pwd <-- This is the command

/Users/chris <-- This is the result of the command

What a little gem! We’ll go into the details of this command later, but you can see that it is a very

simple command that shows you what directory (i.e. folder) you are currently working in by dispaying

the /Users/chris text below the command. So the combination of those three letters, when typed

in an application that knows how to handle them (a terminal), will give you back a result that shows

your current folder, all using text-based symbols.

In the remainder of Chapter 1, we will get started with setting up a terminal application that provides a

command line interface for your operating system (macOS, Linux, or Windows). Once complete, we

will open the terminal application, adjust the font family and size so that it is comfortably readable,

and then introduce the various components—the shell, the command line, the command prompt, and

the various parts of a command. Let’s get rolling!

Terminal Applications
A computer terminal is merely a way to send input to a computer and receive the output results. You

might also hear the word console used interchangeably with terminal, but the latter is a bit more

specific in that it was historically a screen device and keyboard connected directly to a mainframe

computer and used by the operators. Terminals, on the other hand, were connected to computers

remotely on a network. We now of course have terminal applications that are considered virtual

terminals that emulate these older physical terminals. See A History of Modern Computing (2003) by

Paul E. Ceruzzi
[2]

 for more background. There are many alternative terminal applications to choose

from, but we will start with the default applications on each operating system in order to get set up.

For Mac, the default application is called Terminal.app, and on Windows 11 we will focus on the

default Windows Terminal. If you are using Linux, there are many distributions available, but we will

focus on Ubuntu®
[3]

 24.04 and the Gnome Terminal that comes packaged with it. Skip to the next

section that is pertinent to you for your operating system and we’ll get started with a terminal

application!

• Setup for Mac

• Setup for Linux

• Setup for Windows

Terminal Applications 5

Setup for Mac

If you are on a Mac, Apple has included the Terminal.app since it introduced Mac OS X in 2001, so it

has had many years of refinement. You can search for "Terminal.app" using Apple’s Spotlight search

by pressing the Command+Spacebar keys at the same time and typing "terminal" (without the

quotes) in the search bar. Alternatively you can open a Finder window and navigate to the

Applications > Utilities folder to find the Terminal application, as shown in Figure 1. Double click the

icon to open the application.

Figure 1. Open the Terminal.app in the Applications > Utilities folder.

Adjust the font size

That’s it! You should see a window open similar to Figure 2, althought the default color may be

different based on the Appearance settings on your Mac.

Figure 2. A terminal window example on a Mac.

If you are in Dark Mode, you’ll likely see a dark window, and in Light Mode you should see a light

window. In your Dock at the bottom of your screen, you can press Control + click on the Terminal

icon (or use your secondary-click on your mouse) to bring up the icon menu, and choose Options >

Keep in Dock to add it permanently to your Dock.

To finalize your setup, adjust the font size in your terminal so that you can comfortably see the text.

You can also change the font family, but be sure to use a fixed width font since the terminal expects it

for layout purposes. In order to change the font size, select the Terminal menu item and choose the

Settings … item. In the Terminal.app Settings window, select the Basic (Default) Profile, and the Text

tab in the window panel. Use the Change … button to change the font size, as shown in Figure 3.

6 Chapter 1. The Command Line Is For Everyone

Figure 3. Use the File > Settings… menu item to change the font size as needed in the Terminal.app settings.

You are all set! It’s that simple to get configured to use the command line on a Mac. You can continue

on to the section entitled The Shell to become more acquainted with the command line. Thank you

for focusing your power on the magic of the command line!

Terminal Applications 7

Setup for Linux

Getting set up on Linux is quite easy as well. On Ubuntu 24.04, the default desktop manager is

Gnome. To search for applications, similar to Apple’s Spotlight function, press the Super key next to

the Alt key on your keyboard.

If you are on a Windows-branded machine, the Super key may have the Windows

logo on it. It’s also called the System key. If you have Linux installed on Mac

hardware, this is the Command key.

In the search box, type "terminal" (without the quotes), and the default Terminal application icon

should be in view. Click on that icon to open the application. You’re all set! Once open, you may want

to right click on the icon in the Dash (i.e. the Application Dock), and choose the Pin to Dash menu

item so that you have quick access to the Terminal application. See Figure 4 showing how to search for

applications on the Ubuntu Linux Desktop.

Figure 4. Search for the Terminal application on Ubuntu Linux.

Great! Now that you have the Terminal application running, you should see a window similar to

Figure 5. Your colors may be different depending on your Appearance settings, but you will either see

a Light Mode or Dark Mode window.

8 Chapter 1. The Command Line Is For Everyone

Figure 5. A terminal window example on Ubuntu Linux.

Adjust the font size

To finalize your setup, adjust the font size in your terminal so that you can comfortably see the text.

You can also change the font family, but be sure to use a fixed width font since the terminal expects it

for layout purposes. In order to change the font size, select the menu button in the top window bar

and choose the Preferences item. In the Terminal Preferences window, select the Unnamed (Default)

Profile, and the Text tab in the window panel. Use the Custom font checkbox and then the font button

to change the font size, as shown in Figure 6.

Figure 6. Change the font size as needed in the Terminal preferences.

That’s it! It’s that simple to get set up to use the command line on Ubuntu Linux. You can continue

on to the section entitled The Shell onto become more acquainted with the command line. Thank you

for taking the next step as a command line magician!

Terminal Applications 9

Setup for Windows

The Microsoft Windows operating system has a rich history, but one that is diiferent from the Unix-

like operating systems of macOS and Linux. Because of the low-level differences in the systems,

Microsoft has created a component called the Windows Subsytem for Linux, otherwise known as

WSL. WSL provides those of us using Windows an integrated system with a full Linux command line

environment. In this section, we will complete the following list:

1. Open the Windows Terminal application as an Administrator.

2. Install the Windows Subsystem for Linux component.

◦ Install a distribution of Ubuntu Linux.

◦ Restart the computer.

3. Enable the Windows Subsystem for Linux required features.

◦ Restart the computer.

4. Set up Ubuntu Linux in Windows Terminal

◦ Open the Windows Terminal application.

◦ Open an Ubuntu Linux tab.

◦ Create a Linux user and password.

5. Adjust the terminal font size as needed.

After the Windows Subsystem for Linux installation, the Windows Terminal application will have

built-in support and integration for WSL, and will give you a full Linux environment to work with. So

let’s get started!

Open the Windows Terminal application

Windows Subsystem for Linux is considered a developer tool, and as such, the recommended way to

install it is by issuing a command in the terminal application as an Administrator of the computer. To

get started, click on the Windows Start menu icon in the Windows Taskbar, or press the Super key on

your keyboard.

As mentioned before, the Super key may have the Windows logo on it, and is usually

10 Chapter 1. The Command Line Is For Everyone

next to the Alt key.

In the search bar, type "Terminal" (without the quotes). You should see a search result with the

Windows Terminal icon. As shown in Figure 7, choose the Run as Administrator option in the details

pane for the Terminal application.

Figure 7. Search for Windows Terminal application and run it as an administrator.

When run as an Administrator, you will see a dialog asking you to make changes to your system, so be

sure to choose "Yes" to continue. A terminal window should open and look similar to the window in

Figure 8, although the colors may be different depending on your Appearance settings. The Terminal

"Powershell" profile usually defaults to a dark background color. To keep this application readily

available, right-click on the Windows Terminal icon you see in the taskbar, and choose the Pin to

taskbar menu item.

Install Windows Subsystem for Linux

To install WSL using Windows Terminal, click inside the terminal window and type wsl

--install , where there is a single space between the wsl and the --install parts, and press the

Return key, as shown in Figure 8. By running this command, Windows will first download the latest

version of the Windows Subsystem for Linux component, and will install the component. It will also

install files that are part of the Virtual Machine Platform component that WSL needs for integrating

Terminal Applications 11

with the operating system. Once finished, it will prompt you to restart your machine, so do that now.

Figure 8. Run the wsl --install command in the Windows Terminal application.

Enable the Windows Subsystem for Linux required features

Once rebooted, you will need to ensure that the WSL components are enabled. To do so, click on the

Windows Start menu icon in the Windows Taskbar, or press the Super key on your keyboard. In the

search bar, type "Turn Windows features" (without the quotes). As shown in Figure 9, you should see

a search result with a Control Panel option for "Turn Windows features on or off". Click on this

option to open the features dialog, and scroll down in the dialog toward the bottom.

Figure 9. Use Windows Search to open the 'Turn Windows Features on or off' Control Panel.

As shown in Figure 10, ensure that the "Virtual Machine Platform" and the "Windows Subsystem for

Linux" items are checked. After closing this dialog box, Windows will enable these components, and

will prompt you to restart your machine.

12 Chapter 1. The Command Line Is For Everyone

Figure 10. Enable the Virtual Machine Platform and Windows Subsystem for Linux components in the

Control Panel.

Set up Ubuntu Linux in Windows Terminal

Great, the underlying components are now installed! It’s now time to set up Ubuntu Linux using the

Windows Terminal application. So, open the Windows Terminal application again, either from your

taskbar or the Windows Start menu. By default, it will open with a Windows PowerShell profile tab.

As shown in Figure 11, click on the down-arrow icon next to the '+' icon at the top of the window to

open a new tab, and select the Ubuntu profile item.

Figure 11. Open an Ubuntu Linux profile using the drop-down icon in the Windows Terminal tab bar (next

to the + sign.)

Terminal Applications 13

This will initiate the Windows Subsystem for Linux, and will start Ubuntu Linux. It will take a few

minutes to initialize, but will then prompt you to create a UNIX username (i.e. Linux username). You

can use the same name as your Windows user name, or a different one. After entering your name, and

pressing the Return key, it will then prompt you for a password. Type in a password of your

choosing, and also write it down.

As you type in the password field, your typing will not be visible, which is typical

behavior for command line password entry.

Confirm your password a second time when prompted, and your Linux environment will be set up for

you! Once the text has stopped scrolling in the window, you will have a fully-functional Linux

command line, similar to what is shown in Figure 12.

Figure 12. A complete Linux command line running within Windows.

Adjust the font size

To finalize your setup, adjust the font size in your terminal so that you can comfortably see the text.

You can also change the font family, but be sure to use a fixed width font since the terminal expects it

for layout purposes. In order to change the font size, click on the drop-down icon in the tab bar again,

and choose the Settings item in the menu. This opens a new tab in the Windows Terminal with the

settings for the application, and the settings for each profile, including the Ubuntu profile. In the

sidebar on the left, scroll down and click on the Ubuntu profile, as shown in Figure 13. The Ubuntu

profile settings will appear in the right window pane. Scroll down in this pane, and choose the

Appearance section.

14 Chapter 1. The Command Line Is For Everyone

Figure 13. To change the font size, first open the Terminal Settings and choose the Ubuntu profile’s Appearance

section.

This opens a dialog that allows you to change the font size as needed. See the example in Figure 14 for

changing the font size. Once finished, close the Appearance dialog and click the Save button at the

bottom of the Settings tab, as shown in Figure 14, and then close the Settings tab.

Figure 14. Adjust the font size as needed, and click on the Save button to save the profile changes.

Congratulations! You are ready to continue with your command line journey in the next section to

learn about the concept of The Shell! Thank you for building your magic command line skills!

Terminal Applications 15

The Shell
Now that you have set up a working terminal application, you are well on your way to using the

command line with ease! To help with some of the terminology, let’s first discuss what a shell is. In the

course of your work, someone may say "Open up a terminal", "Open up a console", or "Open up a

shell". As we mentioned before, these terms are often used interchangeably. However, let’s touch on

the idea of a shell in more detail.

When you open your terminal application, a number of things happen in the background to set up

your environment, such as loading your default settings profile. As part of this process, the terminal

will start another process called a shell interpreter—which is a program running invisibly in the

background—that is waiting for your command to be typed. When you do type the command and hit

the Return key, the shell program kicks into gear, interprets all of the text that you entered, and runs

the command like a programming language. In fact, you are actually writing commands in what is

called a shell language!

Here’s the same example as Example 1, but with a comment added to the command:

Example 1: Issuing the pwd command with a comment

chris@ophir ~ % pwd # Issue the pwd command

/Users/chris

Notice that the pwd characters are followed by a space, then a # (hashtag) symbol, and then another

space and the comment sentence. The shell interpreter evaluates everything in the command, and

validates it based on the shell language rules. In this case, we just learned that you can issue a

command, followed by a # (hashtag) character and any other written comment, and the shell will

ignore any characters to the right of the hashtag because it knows it is a comment, and will proceed to

give you back a result.

The take home message here is that the shell interpreter is doing the heavy lifting behind the scenes,

and there are many variants of these interpreters. The earliest shell interpreter is attributed to Louis

Pouzin in 1964 for the CTSS/Multics operating system.
[4]

 Since 1979 the UNIX operating system

included the default shell interpreter called sh , and a free version of it is still the default on Linux and

Mac. That said, there has been immense improvements to shell programming languages since the

1970s, and many different interpreters, with new features, have been written and shipped with various

operating systems. To name a few, there is ksh , csh , bash , and zsh .
[5]

 On modern versions of Linux,

the default shell tends to be bash , and on a Mac it is now zsh . For the purposes of this handbook,

16 Chapter 1. The Command Line Is For Everyone

we’ll see that these shells all work similarly if not identically in some cases. In the next section, we’ll

take a closer look at the command prompt, but know that the shell interpreter is the workhorse behind

your magic commands!

The Command Prompt
We are now familiar with opening a terminal application, which in turn spins up a shell interpreter to

handle your commands behind the scenes. Now let’s familiarize ourselves with the idea of the

command prompt, which is your go-to location for typing in commands. Once your terminal

application has opened, you are presented with an almost empty window, with a few characters

written at the top. These characters are followed by the cursor, which is some sort of flashing—or not

flashing—block character, underscore or other inviting symbol that ever so subtly evokes "type here".

Collectively, all of these characters are considered the command prompt—dutifully waiting for you to

enter a command. See Figure 15 for a labeled diagram of a typical command line.

command prompt cursor

user host current folder

chris@nuthatch ~ % █

Figure 15. A typical command line, with an example of a default zsh command prompt, showing the user

name, the computer host name, the current folder (~), and the % sign, followed by a block cursor.

The command prompt on modern systems tend to include your user name, followed by an @ (at)

symbol, followed by the network host name of your computer. There is usually some kind of delimiter

character (a space or colon), followed by a ~ (tilda) character (which, as we discuss later, represents

your home folder). Lastly, you will see either a $ (dollar sign) character (for bash shells) or a %

(percent) character (for zsh shells). Command prompts can be customized to your liking—modern

prompts can be very colorful and include a lot of information, or can be bare bones, depending on

your preferences. Take a look at Example 3 for various command line prompt examples.

The Command Prompt 17

Example 2: Examples of various command line prompts.

chris@ophir ~ % █ ❶
chris@nuthatch:~$ █ ❷
root@nuthatch:~# ▏ ❸
>_ ❹

❺

❶ A zsh prompt with username, hostname, current folder, a % symbol, with a block cursor

❷ A bash prompt with username, hostname, current folder, a $ symbol, with a block cursor

❸ An administrator prompt with username, hostname, current folder, a # symbol, with a line cursor

❹ A minimalist prompt with a > (chevron) symbol and an _ (underscore) cursor

❺ A typical root prompt (administrator) with a # symbol

What character shows up in the prompt is configurable, and some people prefer having a minimalist

prompt with just a > (chevron) symbol, with no username or other information. The command

prompt tends to be on the very first line of your terminal window. The combination of the command

prompt, and this imaginary first line of text at the top of your window, is considered the command

line. This is your magic portal that gives you superpowers with your computer, which we will see in

the following chapters.

On Unix-like operating systems like macOS and Linux, an account for the

administrator (also called the super-user, or root), conventionally is denoted by a #

(hashtag) symbol in the command prompt rather than a $ (dollar) or % (percent) sign,

which denote a regular user. This reminds you to be cautious when issuing

commands as the administrator.

The Parts of a Command
In the previous sections we’ve had a brief look at a very simple command called pwd , and we will

discuss it further in Chapter 2. Core Commands. But to learn about the parts of a command, and to get

a feel for command line syntax, let’s look at an imaginary command called stardb , which is shown in

Figure 16. The command stands for "star database", and so you could imagine that we have a database

of star information stored within it, and the stardb command allows us to work with the database.

In fact, one way to work with it is to search the database and filter the results based on what stars you

are interested in. The command even has some built-in options to return very popular results, like only

18 Chapter 1. The Command Line Is For Everyone

returning giant-sized stars. The command can also save your search records to a file of your choosing,

so you can share your starry sky knowledge with friends. So, given our fictitious stardb command,

let’s discuss the parts of a typical command that are shown in Figure 16.

command arguments

option value

long option operand

█

Figure 16. The labeled parts of a command and the command’s arguments, including a subcommand, option,

long option, option value, and operand.

Let’s start with the command name itself, stardb . To be able to run this command, it has to be

installed on your system, and located in a folder that is well-known to your shell interpreter.
[6]

 Let’s

assume that our stardb command is installed correctly. Next, notice that there is a space character

after the command itself, and in between the other parts of the full command. This is very important,

because the space character acts as a boundary between the command parts, and the shell interpreter

will parse the command parts based on these spaces. If you have two or more consecutive spaces

between command parts, the shell interpreter treats them as a single space combined, so don’t worry

about having extra spaces. But yes, be sure to use a space between the parts of a command.

When working with file names that have spaces in the name, use either double-quote

or single-quote characters around the file name to tell the shell to treat the spaces as

part of the file name. For instance, use "the biggest stars.txt" or 'stars are awesome.jpg'

if there are spaces in the file name.

After you’ve typed the command name, you then type the space-separated list of command arguments.

Command arguments are a way to adjust the behavior of your command, and in the case of our

imaginary stardb command, we pass in a subcommand called search , to tell the stardb command

that we’d like to query the database. The twenty-one fundamental commands we cover in the book

don’t make use of subcommands, but it’s good to know that other commands do use them.

It’s important to note that all of the all of the characters we type on the command line

are case-sensitive, so stardb search is all lowercase. Most commands tend to be

The Parts of a Command 19

lowercase, but it’s not a steadfast rule. Commands can be created with both

uppercase and lowercase, and numbers in them as well.

So after our first command argument called search , notice the -v argument, which is next in line

after the required space character. This is known as a command option, which can also be called a flag,

or a switch. Command options are like the knobs or dials on a coffee maker that let you adjust the

settings and refine how the coffee turns out. The - (dash) character before the v is what tells the shell

interpreter that this is a command option, and it will treat it as such. In our stardb scenario, the -v

option means that we want it to return verbose output, meaning that we want all the star details we can

get from the database. It’s very common for commands to have a -v option that is a request for

verbose output. However, note that the -v option is command-specific, so it could mean something

entirely different when used with a different command. The way to know what options are available

for a command is to read the manual page that explains how the command works and what it expects.

We will cover this topic in Chapter 2. Core Commands.

Now we know that you can pass single-letter options to a command, and that the meaning of the

option might not be entirely apparent. So a second and more expressive way to modify a command is

with long options, such as the --only-giants=true command argument in our imaginary scenario.

Long options spell out how they modify the command and can be easier to read, but are longer to

type. In this case, the long option is --only-giants , and the -- (double dash) is the indicator to the

shell that this is an option. The =true portion is setting an option value, meaning that the command

has a setting of only-giants (for the search), and the value will be set to true . So long options are

helpful for readability, short options are quick and easy once you are familiar with the command. Both

can potentially take option values, but are not required. For instance, the command may set a verbosity

level with -v 8 where the option value could be a number from 1 to 10. Commands often offer both

a short option and a long option at the same time. For instance, -h and --help will often be available

and will both print out a short synopsis of how to use the command and what all the options are.

While we are focused on the short and long option styles, note that you may also see

options like -help which has the single - (dash) of a short option and a full word

like a long option. This format is valid as well. Just read the manual for each

command to know what is expected.

We now come to the last argument of our stardb command, which is -o giants.txt . This is a

short option that means "write the output to the given file name", and so our stardb command will

create a file called giants.txt that contains the results of our search, with plenty of star-friendly

information. The file name that we pass in is a type of argument called an operand, meaning that it is

20 Chapter 1. The Command Line Is For Everyone

being acted upon in some way by the command, which is the operator. Arguments that refer to the

output, or results-side of the command are usually considered operands. This is a fine detail, but just

know that the terms arguments and operands are at times used interchangeably.

We have made it to the very end our command, where we see the Return key symbol. Commands are

run when you press the Return key, so be sure to do so when you’ve finished writing your command.

When you do, in this case, star information will be written to the giants.txt file. You would also

normally see additional information printed to your terminal screen in the lines below your command.

So that’s it! These are the general parts of a command we use on the command line, but what if our

command is super long? Will it wrap to the next line? Will it still be readable? Let’s discuss those

topics.

Single Line and Multi-Lined Commands
A lot of commands can be short and sweet, like the pwd command we’ve seen in the previous sections.

But many commands have a lot of options available to modify the command and refine the results that

are returned. Some commands include dozens of options, and it may be helpful to use many of them

at once. So our command will often not fit on a single line of text available in your terminal window,

unless you have a very large screen and can widen the terminal window. So, we’ll often see commands

wrap to the second and third line of the window, as depicted in Example 4.

Example 3: A long command example with many options that wraps to the second line.

chris@ophir ~ % stardb search -v --only-giants=true --star-classes "bright-

yellow-giant, orange-bright-giant, red-super-giant, white-super-giant, blue-

super-giant" -o super-giants.txt

Having the command wrap to the next line can work just fine, and will only be executed when you

press the Return key. But there are times when the command gets very long and complex, and you

just want to clean it up. We have the power! You can use a \ (backslash) character followed by the

Return key which is used as an escape character. The shell interpreter will ignore the Return

keypress. You can use the \ (backslash) character as many times as needed to make your single-line

command a tidy multi-line command, as is shown in Example 5.

Single Line and Multi-Lined Commands 21

Example 4: A multi-line command example with options split across lines with a \ (backslash) character.

chris@nuthatch:~$ stardb search -v \

> --only-giants=true \

> --star-classes "red-super-giant, white-super-giant, blue-super-giant" \

> -o super-giants.txt

As you type this command, notice that the shell places the > (greater-than) character on the following

line, indicating that it is waiting for the rest of the command to be typed. Now, when you press the

final Return key without a \ (backslash) character, your command will execute. Show all the super

giant stars!

When you are working with commands, you will notice that your mouse pointer has no effect on the

position of your command line cursor, which takes a little getting used to! For very long commands,

either as single line or multi-line commands, there are times when you need to go back and edit a

portion of the command that may have been mistyped, or you may want to change an option. You can

use your keyboard’s ◂ left arrow and ▸ right arrow keys to move the cursor to the left and right,

and the Delete key will delete characters at the cursor. Take some time to familiarize yourself with

moving left and right along your command.

Of course, this can become tedious when you have a very long command and need to edit an option

that is close to the beginning of the command, and your cursor is near the end. But wait, there’s a

handy trick! You can use the Control+a key combination to skip the cursor to the beginning of your

command! To be specific—while holding the Control key, also type the a key, and zoom—your

cursor has raced to the beginning of the command! Likewise, you can use the Control+e key

combination to skip the cursor back to the end of your command. These two keyboard sequences can

really speed up your command editing, when your commands get noticeably long.

Some shells also support the Option+ ◂ left arrow key combination (or Alt+

 ◂) to move the cursor word-by-word to the left, and the Option+ ▸ right arrow

key combination (or Alt+ ▸) to move the cursor word-by-word to the right.

As we type and execute commands with the return key, we inevitably issue a command that wasn’t

quite what we meant, but it was close! Perhaps there was a single typo in the middle of the command.

Instead of re-typing the very long command again, you can use the ▴ up arrow key to scroll up to

your previous command, and then edit it. Yes! It’s so easy! In fact you can use the ▴ up arrow key

multiple times to scroll through your command history, and can use the ▾ down arrow key multiple

22 Chapter 1. The Command Line Is For Everyone

times to scroll back to your more recent commands. Amazing!

All of these key combinations can be a game changer with command line productivity, so practice

using them often, and they will become second nature. With dedication and repetition, using the

command line will become extremely familiar, and you’ll notice how rapidly you can get things

accomplished without leaving your keyboard. We’re just getting started!

Single Line and Multi-Lined Commands 23

Command Line Interfaces are Awesome!
Our computers are wonderful tools for creativity, particularly due to the graphical user interface

metaphor that helps us navigate our machines. And now, as we familiarize ourselves with the

command line interface, we see that the terminal application can become our trusty friend and a

powerful addition to our toolbox. The command line helps us uncover seemingly secret functionality

on our computers by using text-based commands to orchestrate our work in a concise and effective

manner. In this chapter we have learned how to access a terminal application on Mac, Linux, and

Windows. We now have a solid understanding of a shell interpreter that handles the commands we

type, what a command prompt is, and how to construct a command with command arguments and

the various styles of command options. We now know how to edit single and multi-line commands,

and how to move our cursor within our commands with ease. These concepts set the foundation for

the upcoming chapters where we learn individual commands that enable us to navigate our computers,

create and manage files and folders, and work with our data files in ways that are often impossible with

a graphical approach. The command line is truly a tool of empowerment, and a magic portal into your

machine. In Chapter 2. Core Commands, we will get hands on experience with navigation commands,

and will begin to traverse our files and folders with ease, while getting to know the structure of our

storage file systems in better detail. Let’s go!

[1] Before desktop computing arose, sending commands to a computer was the predominant way to work with them. The success of

the UNIX operating system developed by AT&T Bell Laboratories inspired the development of Linux, the architecture of macOS,

and later Windows Subsytem for Linux. We focus on commands in these Unix-like systems.

[2] Ceruzzi, Paul E.. A History of Modern Computing. United Kingdom: February, 2003. https://mitpress.mit.edu/9780262532037/

a-history-of-modern-computing/

[3] Ubuntu and Canonical are registered trademarks of Canonical Ltd.

[4] See https://multicians.org/shell.html

[5] The Bourne shell (sh) was wriiten by Stephen Bourne at Bell Labs for UNIX and was released in 1979. Also at Bell Labs, David

Korn created Korn Shell (ksh) which was released in 1983 for UNIX. An alternative for sh called CShell (csh) was written by Bill Joy at

the University of California Berkeley for BSD UNIX, and Brian Fox wrote the Bourne Again Shell (bash), which is an open source

rewrite of the Bourne Shell. In 1990, Paul Falstad released zsh as an open source program.

[6] Shell interpreters have a concept of a PATH variable, which is a list of folders that it will consult in order to find the command you

want to run.

24 Chapter 1. The Command Line Is For Everyone

https://mitpress.mit.edu/9780262532037/a-history-of-modern-computing/
https://mitpress.mit.edu/9780262532037/a-history-of-modern-computing/
https://multicians.org/shell.html

	Awesome
Command Line: 21 Commands to Get You Started
With Your Computer’s Magic Portal!
	
	
	Contents
	Preface
	Chapter 1. The Command Line Is For Everyone
	Getting Started
	Terminal Applications
	The Shell
	The Command Prompt
	The Parts of a Command
	Single Line and Multi-Lined Commands
	Command Line Interfaces are Awesome!

	Chapter 2. Core Commands: pwd, man, clear, cd, ls
	For the Love of Files and Folders
	The pwd Command—Print the Working Directory
	File and Directory Paths
	The man Command—Accessing the Manual
	The clear Command—Keeping It Tidy
	The cd Command—Changing Directories
	Tab Completion—Give Your Fingers A Rest
	The ls Command—Listing Files and Folders
	Core Commands Are Awesome!

	Chapter 3. File Commands: echo, mv, cp, rm, nano
	Powerful Ways To Work With Files
	The echo Command—Easily Creating Files
	Redirection, Standard Input, Output, and Error
	The mv Command—Renaming and Relocating Files
	The cp Command—Copying Files
	The rm Command—Deleting Files
	The nano Command—Creating and Editing Files
	Command Line File Handling is Awesome!

	Chapter 4. Folder Commands: mkdir, rmdir, du
	Lightning Fast Folder Management
	The mkdir Command—Creating Directories
	Expansion—Powerful Techniques To Speed Up Your Commands
	The rmdir Command—Deleting Directories
	The du Command—Viewing Disk Usage
	Command Line Folder Handling is Awesome!

	Chapter 5. Text Data Commands: cat, sort, head, tail, grep
	Versatile Ways To Work With Text Data
	The cat Command—Viewing and Combining Files
	Pipes—The Power Of Compound Commands
	The sort Command—Sorting the Contents of a File
	The head Command—Previewing the Top of a File
	The tail Command—Previewing the Bottom of a File
	The grep Command—Filtering Data
	Command Line Data Handling is Awesome!

	Chapter 6. Utility Commands: less, history, open
	Utilities That Make Your Life Easier
	The less Command—Paging Output for Easy Viewing
	The history Command—Using Your Command History
	The open Command—Opening Files and Folders
	Command Line Utilities are Awesome!

	Chapter 7. Next Steps
	Practice Makes Perfect!
	Upgrade Your Terminal Colors and Prompt
	Explore the Universe of Commands
	Congratulations!
	You Are Awesome!

	Appendix A: Customizing Your Terminal
	Appendix B: Using a Package Manager
	Installing More Commands On Your Computer
	For Mac—Installing Homebrew
	For Windows and Linux—Using The Built-In Package Manager

	Appendix C: Regular Expressions—Matching Patterns Like a Pro
	

